Искусство шить

Записи с меткой "автоматизация"

Проектирование раскладок лекал деталей одежды в САПР

Построение раскладок в компьютере, зарисовка их в натуральную величину или раскрой на АРУ – именно ради решения этой задачи создавались первые швейные САПР. Автоматическая, быстрая, предельно плотная раскладка лекал – давняя мечта изготовителей одежды, так как от качества раскладок зависит себестоимость и конкурентоспособность производимых изделий.

Многолетний опыт использование САПР раскладки на предприятиях убедительно показал значительные преимущества компьютерных технологий формирования раскладок перед традиционным ручным способом.
Применение САПР для проектирования раскладок:

* обеспечивает экономию сырья до 3 % за счет нормирования межлекальных отходов, уплотнения раскладок и устранения потерь, связанных с обмеловкой лекал;
* повышает производительность и качество труда оператора-раскладчика, при этом напряженность труда раскладчика снижается, так как система подстраховывает и предостерегает его от ошибок;
* способствует более рациональному использованию производственных площадей, так как позволяет заменить столы для раскладок лекал на компактные автоматизированные рабочие места (АРМ) и исключить оборудование для измерения площади лекал, для изготовления копий раскладок, для изготовления и хранения лекал (сокращение затрат на лекальное хозяйство составляет 75…85%);
* при использовании плоттера позволяет получать зарисовки раскладок в натуральную величину в неограниченном количестве и в кратчайшие сроки;
* обеспечивает условия для раскроя на АРУ (автоматизированных раскройных установках).

Процесс формирования раскладки в САПР заключается в размещении изображений лекал на экране дисплея в площади прямоугольника, длина и ширина которого соответствуют параметрам полотна настила.

Существует три основных режима формирования раскладок.

* Ручной или диалоговый — когда очередность и местоположение лекал выбирает раскладчик.
* Автоматический — когда система сама строит различные варианты раскладок и выбирает лучший.
* Полуавтоматический или комбинированный — когда часть лекал раскладчик укладывает по своему усмотрению, а остальные — система.

Рассмотрим каждый из этих режимов подробнее.

* Ручной (диалоговый) режим формирования раскладок лекал

В ручном режиме раскладчик лекал выполняет на экране компьютера практически ту же работу, что и на столе.
Оператор-раскладчик на экране дисплея выбирает и помещает нужные лекала в поле раскладки. Система фиксирует лекало в указанном месте и автоматически выполняет контроль соблюдения технологических требованиям: соблюдение заданных технологических зазоров; отсутствие пересечения внешнего контура устанавливаемого лекала с контурами ранее уложенных лекал, с границами настила, с линиями стыковки секций настила. При невыполнении любого из перечисленных требований система не допускает размещения лекала в указанном месте, подает звуковой сигнал о необходимости корректировки в размещении лекала или автоматически осуществляет корректировку расположения лекала в схеме раскладки.

Качество и скорость выполнения раскладки зависит от мастерства раскладчика и удобства пользовательского интерфейса программы. В этом режиме затрачивается больше времени, чем в других режимах, но в 1,5—2 раза быстрее, чем при работе на столе.

* Автоматический режим формирования раскладок лекал

Автоматическая раскладка сложна в ее программной и технической реализации. Наличие автоматического режима раскладки лекал в САПР является свидетельством высокого профессионального уровня специалистов разработчиков системы.

При автоматическом режиме раскладки функции оператора сводятся к заданию параметров материала и выбору комплектов для раскладки, а система сама строит различные варианты раскладок с учетом заданных технологических ограничений. Программа останавливается либо по указанию пользователя, либо по истечении заданного на поиск раскладки интервала времени, либо при достижении определенного процента межлекальных выпадов. Далее система предлагает один или несколько наилучших вариантов.

Этот способ является наиболее быстрым и удобным, но, тем не менее, автоматический режим раскладки лекал есть далеко не во всех САПР, и даже при его наличии в системе им не всегда пользуются на предприятиях.

Проблема состоит в том, что ни одна автоматическая раскладка не может превзойти опытного раскладчика. Как правило, автоматическая раскладка менее экономична на 2-4 % по сравнению с ручной. Задача максимально плотного размещения плоских фигур произвольной конфигурации внутри прямоугольной области с переменной длиной одной из сторон решается только методом последовательного перебора вариантов. Но число возможных вариантов слишком велико. Например, количество вариантов раскладки для комплекта всего лишь из 5 разных деталей при соблюдении направления ворса равно 260, для того же комплекта без соблюдения направления ворса — 520, а с учетом возможных поворотов лекал на малые углы (в пределах допустимого отклонения от заданного направления долевой) их количество возрастает практически до бесконечности. Ввиду сложности задачи и многовариантности возможных решений технически затруднительно обеспечение всех требований, предъявляемых к рациональным раскладкам. Поэтому автоматические раскладки ограничены определенными условиями и не гарантируют выполнения всех требований. Так, например, автоматическая раскладка во многих САПР не обеспечивает совмещения деталей с рисунком ткани, не предусматривает использования допустимых отклонений от долевой, кромки ткани, не позволяет изменять величину технологического зазора между деталями в раскладке. Только в последние годы появились программы, обеспечивающие получение «хороших» результатов раскладки за сравнительно короткий промежуток времени.

Автоматическая раскладка не гарантируют получение оптимального, т.е. наилучшего из всех возможных, результата. Поэтому на современном этапе наиболее рациональным видится использование комбинированных программ построения раскладки, когда кроме автоматического режима проектирования, есть и полуавтоматической, в котором человек имеет возможность корректировать результат автоматической раскладки, а также изменять расположение лекал для учета специфических технологических ограничений

* Полуавтоматический (комбинированный) режим формирования раскладки лекал

Он совмещает в себе ручной и автоматический режимы. Это наиболее эффективный режим построений раскладок, так как позволяет использовать опыт оператора-раскладчика и быстродействие компьютера. Вместе они быстрее строят экономичную и технологичную раскладку, чем каждый из них в отдельности.

Полуавтоматический режим раскладки может быть реализован двумя способами:

— оператор-раскладчик вручную размещает на материале часть лекал (как правило, наиболее крупных или наиболее сложной конфигурации), затем остальные лекала раскладываются системой автоматически.

— вначале все лекала раскладываются в автоматическом режиме, а затем получившиеся раскладки просматриваются оператором-раскладчиком и при необходимости корректируются.

В некоторых САПР, например в САПР «Грация», при формировании раскладки возможен неоднократный переход от ручного режима к автоматическому и наоборот.

Эффективная программа построения экономичных и технологичных раскладок:

— поддерживает сочетание ручного, автоматического и полуавтоматического режимов с учетом различной лицевой поверхности (с направленным ворсом или оттенком, рисунком) материала, способа настилания, дефектов и технологических ограничений;

— предоставляет оператору возможность задавать дополнительный припуск к деталям (на усадку, подгонку рисунка и т. п.); объединять лекала в группу, которая будет двигаться как единое целое (это удобно для мелких, компактно уложенных лекал); зеркально отображать и поворачивать лекала; разрезать детали в любом месте на части с припуском на шов (в целях рационального размещения лекал в раскладке) и соединять части лекала в целое;

— автоматически отслеживает изменений в лекалах;

— рассчитывает наилучшее сочетание размеров и ростов моделей в одной раскладке;

— предоставляет возможность отмены операций, выполняемых в процессе раскладки;

— готовит процесс раскроя, определяя стартовые точки, направление вырезания, и т.п.

— позволяет передавать информацию о раскладке в другие системы;

— стимулирует проектирование раскладок самими конструкторами, что создает условия для корректировки конструкции модели с целью достижения максимального использования материала без снижения качества изделия;

— обеспечивает экономию времени и материалов.

Печать готовых раскладок.

Готовые раскладки записываются в файл (для дальнейшего использования) и распечатываются в натуральную величину на плоттере. Печать осуществляется на плоттере: целиком или по частям, в зависимости от формата плоттера. Напечатанная на бумаге в натуральную величину раскладка используется в качестве разметки (намеловки) при раскрое настила. На основе раскладки может быть подготовлена программа порезки настила на Автоматизированной Раскройной Установке зарубежного или отечественного производства.

Подсистема САПР «Раскладка» имеется практически во всех швейных САПР. Среди профессиональных швейных САПР пользующихся наибольшим спросом на отечественном рынке можно выделить САПР «Грация», «Ассоль», «Комтенс», «JULIVI», «Автокрой», а также «Леко», «Силуэт», «Абрис» и др.

Используются также САПР зарубежных разработчиков: Investronica Sistemas (Испания); Gerber Garment Technology (США); Lectra Sistemes (Франция); Pfaff и Grafts (Германия); AMF Sybrid (Великобритания) и др.

Список источников информации:

http://window.edu.ru Сурикова Г.И., Сурикова М.В., Сурикова О.В. Проектирование раскладок лекал деталей одежды в САПР: Учебное пособие Иваново: ИГТА, 2005.
http://www.lpb.ru Ещенко В., Светиков В., Ещенко А. Комплексная автоматизация швейных предприятий
http://www.saprgrazia.com
http;//www.comtense.ru
http://www.autokroy.ru
http://www.julivi.com
Андреева М. В.,. Холина Т. Ю., Павлов А. М. Раскладка лекал в САПР «Ассоль».// Швейн.пром-сть.№4.2001

Проектирование структур технологических операций

Одним из способов повышения эффективности производства является научно обоснованное проектирование технологических процессов изготовления швейных изделий, так как именно на этапе разработки технологии закладываются основные технико-экономические показатели будущего производства.

Сведение проектирования технологической операции к выбору ее составных элементов методом проб и ошибок на основе существующих систем микроэлементов обычно приводит к субъективному и неоднозначному определению ее параметров. На существующем уровне развития методов проектирования технолог предприятия не в состоянии оперативно и оптимальным образом выполнить синтез технологических операций.

На кафедре технологии швейного производства МТИЛПа проведена работа, в которой сделана попытка выделить элементы, составляющие операцию, формализовать этапы синтеза технологической операции и тем самым выявить принципиальные возможности создания базовой основы для автоматизированного проектирования технологических процессов изготовления швейных изделий.

На основе дифференциации структуры технологической операции можно выделить следующие составляющие ее элементы: трудовые движения, трудовые действия, технологические приемы операции. Предварительный анализ технологических операций на предприятиях, где используются системы микроэлементов для рационализации трудовых процессов, показал неэффективность разделения операций на трудовые действия и движения. Это обусловлено тем, что и при «ручном», и при машинном методе проектирования возникают трудности управления большим объемом информации.
В результате поиска возможных направлений синтеза технологической операции, выявления ее технологических, организационных параметров и критериев для выбора основных и вспомогательных элементов рекомендуется оперировать технологическими приемами операции (ТПО).

Зная содержание технологических приемов, нормы времени на их выполнение и выбрав оптимальную по затратам времени последовательность их выполнения, можно спроектировать технологическую операцию по заданным критериям. Например, для выбора технологического приема «взять деталь» выявлены следующие критерии: число деталей, участвующих в операции, их размеры, местоположение, вид материала.
В данном сообщении исследуется структура технологических операций, выполняемых на универсальных швейных машинах, дается обобщенная функциональная модель проектирования машинных операций и приводятся примеры их формирования при изготовлении женских плащей в условиях московского ПШО «Радуга».

Состав машинных технологичечких операций по пяти этапам

Анализ укрупненной системы микроэлементов, используемой на этом предприятии, и системы МТМ-1 позволил выделить для любых машинных технологических операций пять основных этапов их выполнения. Для каждого этапа характерен определенный набор технологических приемов (рис. 1). Принятые условные обозначения приемов согласуются с используемой в промышленности символикой: Л — взять деталь и перенести ее в рабочую зону; В — переместить деталь; D — выравнить срезы; С — подвести деталь под рабочий орган машины (иглу, лапку); Е — сложить, перегнуть деталь; F — повернуть деталь под иглой; S — выполнить машинную строчку, G — разрезать нитки; Н — отложить готовый полуфабрикат.

В общем случае функциональная модель простейшей технологической операции в соответствии с выделенными при анализе этапами ее выполнения может быть символически представлена в виде следующей последовательности переходов:
A-? C ? S ? G ? H

Такая структурная модель показывает функциональную связь основных этапов образования технологической операции, но не отражает наличия и количества вспомогательных приемов работы.

На основании анализа технологических операций, встречающихся при изготовлении женских плащей, была составлена обобщенная функциональная модель операций, выполняемых на универсальных швейных машинах (рис.2). Модель включает пять основных функциональных блоков (ФБ-1, ФБ-2, ФБ-3, ФБ-4, ФБ-5) и два блока вспомогательных приемов (ВПО-1 и ВПО-2).

Предлагаемая структура связей основных и вспомогательных блоков содержит в себе все возможные виды операций, выполняемых на универсальных швейных машинах. В производственных условиях технолог достаточно легко, без дополнительных технических средств может по предлагаемой модели и исходным конструктивным данным деталей составить последовательность выполнения любой машинной технологической операции, т. е. выполнить наиболее трудоемкий этап ее проектирования.

В предложенной обобщенной функциональной модели начало выполнения операции определено блоком ФБ-1, что соответствует движению «взять деталь и перенести ее в рабочую зону». Конкретный индекс технологического приема Аi (i = 1, 2, ..., р) устанавливается в зависимости от организации рабочего места, габаритов и количества деталей, участвующих в операции. Из блока ФБ-1 согласно модели можно пойти по двум направлениям: либо следовать по ветви 1 в блок ВПО-1, содержащий вспомогательные приемы Bj, Dk, El, либо следовать по ветви 2 в блок ФБ-2, определяющий подведение деталей под рабочий орган машины Сm. Выбор направления перехода зависит от габарита деталей, участвующих в операции, и от характера их соединения (поверхностью или срезом).

Если в технологической операции соединяются две разновеликие детали, то в зависимости от характера этого соединения возможны два решения. Соединение среза меньшей детали с поверхностью большей (например, настрачивание кармана на полочку) определяет следование в блок ФБ-2 по ветви 2, что обусловлено необходимостью закрепления большей детали под лапкой швейной машины. Для соединения разновеликих деталей по срезам характерно направление следования в блок ВПО-1 по ветви 1, так как в этом случае необходимо выполнить определенные вспомогательные приемы, например, уложить срез детали по намеченной линии, выравнить срезы друг с другом и т. д.
Если же в операции участвуют одинаковые по размерам детали, то независимо от характера их соединения они сначала следуют в блок ВПО-1 (выравнивание, расправление деталей и т. д.), а затем по ветви 4 в блок ФБ-2.

Например, в технологической операции «настрочить три шлевки на рукав по намелке» имеются разновеликие детали, причем на поверхность большей детали (рукав) настрачивают мелкие детали (шлевки). Это означает первое следование по ветви 2 для подведения детали рукава под лапку швейной машины и возврат по ветви 3 в блок ФБ-1 для взятия первой шлевки. Поскольку шлевка присоединяется к рукаву по срезу, характер этого соединения определяет следование в блок ВПО-1, где выбираются необходимые вспомогательные приемы для укладывания шлевки на рукав по намелке.
Выбор нужного направления перехода из блока ФБ-2 зависит от вида строчки. Строчка с закрепкой не требует вспомогательных приемов перед своим выполнением, так как выполняется на коротком участке шва, и это определяет дальнейшее движение по ветви 5 непосредственно в блок ФБ-3 строчек Sz.

Обобщенная функциональная модель проектирования швейных операций

Строчка без закрепки перед стачиванием требует выполнения вспомогательных приемов, таких как перехват, уравнивание срезов и др. В этом случае в блок ФБ-3 следуют по ветвям 6 и 7 через блок ВПО-2.

Дальнейшее продвижение из блока ФБ-3 возможно по трем направлениям.

Первое направление — возврат в блок ВПО-2 по ветви 8, необходимый в случае, когда требуется останов машины на длинной строчке. Число возвратов равняется числу остановов машины.

Второе направление — движение в блок ФБ-1 по ветви 9, осуществляемое в том случае, когда в операции участвуют детали, прикрепляющиеся в процессе выполнения строчки, например прикрепление товарного ярлыка.

Третье направление — движение в блок ФБ-4, функционально определяющий обрезку ниток Gj, по ветви 10 возможно при условии окончания строчки.

Из блока ФБ-4 имеются три выхода по ветвям 11? 12 и 13. Ветвь 11, ведущая в блок ФБ-1, необходима в том случае, когда в операции участвует несколько деталей, присоединяющихся последовательно, например последовательное притачивание трех шлевок к рукаву.

Ветвь 12 целесообразно использовать в случае, когда после обрезки ниток необходимо завершить операцию на уже участвующих в операции деталях. Например, после настрачивания первого конца шлевки на рукав необходимо уложить второй ее конец, т. е. выполнить определенный набор вспомогательных приемов, выбрав их из блока ВПО-1, проследовать по ветви 4 в блок ФБ-2, подложить детали под иглу и проложить строчку с закрепками, для чего по ветви 5 надо пройти в блок ФБ-3 и оттуда вернуться в блок ФБ-4 для обрезки ниток.

Движение по ветви 13 возможно в случае полного за¬вершения операции, так как эта ветвь ведет в блок ФБ-5, функционально определяющий укладку готового полуфабриката Ht.

Таким образом, при формировании технологических операций последовательность перехода от блока к блоку технологических приемов операции будет определяться содержанием и параметрами конкретной операции. Технолог предприятия, используя функциональную модель машинных технологических операций, на основе исходных конструктивных параметров соединения, числа и размеров деталей, участвующих в операции, может однозначно и оперативно определить последовательность выполнения технологических приемов. После того как структура технологической операции сформирована, производится наполнение ее конкретным содержанием, т. е. выбирают технологические приемы из основных функциональных блоков и блоков вспомогательных приемов.

Разработанный способ формирования технологических операций представляется возможным передать для расчета на ЭВМ при наличии формализованного алгоритма.
Автоматизация проектирования технологических операций позволит повысить производительность труда технологов, обеспечить мобильность перестройки технологических процессов, повысить качество изделий, поднять общий уровень производства.

Статья из архива журнала «Швейная промышленность» 03/86 авторы: Т. А. Железнякова, В. Е. Мурыгин, инж. Т. А. Ильина