Искусство шить

Записи с меткой "волокно"

Первичная обработка хлопка

Собранный с полей хлопок-сырец (семена, покрытые волокнами) поступает на хлопкоочистительные заводы для первичной обработки, так как в массе хлопка кроме волокон содержатся различные сорные примеси, наличие которых снижает качество хлопка.

Уборка хлопка

Впроцессе первичной обработки на хлопкоочистительных заводах с помощью зерноотделительных машин от семян последовательно отделяют:

  • хлопковое волокно — волокна длиной в основном более 20 мм;
  • пух он же линт — волокна длиной менее 20 мм;
  • подпушек он же делинт — короткий волокнистый покров длиной менее 5 мм.

На долю хлопкового волокна приходится около 1/3 от общей массы хлопка-сырца. Далее...

Хлопчатник. Рост и развитие волокна хлопка

Американцы называют хлопчатник «дитя солнца», так как он для своего созревания требует не только много тепла, но обильных и частых дождей, иначе он просто не вызреет.

Хлопчатник принадлежит к семейству мальвовых — Malvaceae, к роду Gossypium, который имеет чрезвычайно много видов и разновидностей древесных, кустарных и травянистых, многолетних, двухлетних и однолетних растений, произрастающих в тропических и субтропических районах Азии, Америки, Африки, Австралии. На территории бывшего Советского Союза хлопчатник возделывается в Средней Азии, Казахстане и Закавказье.

Для получения прядильных волокон культивируются однолетние кустарниковые растения. Высота куста 1-1,5 м. Через 11-12 недель после посева хлопчатник расцветает. Цветок крупный, с 5 кремовыми, жёлтыми или белыми лепестками. Расцветают цветы утром, опадают вечером того же дня. Окраска лепестков меняется при увядании, становясь оранжевой, красной или лиловой. Далее...

Поливинилхлоридные (ПВХ) волокна

Поливинилхлоридные (ПВХ) волокна — синтетические волокна, формируемые из растворов поливинилхлорида, перхлорвиниловой смолы или сополимеров винилхлорида

Формование осуществляют по сухому или мокрому методу (см. подробнее)

Отличительные свойства ПВХ волокон.

Обладают высокой химической стойкостью, низкой электропроводностью очень низкой термостойкостью (начинают деформироваться при температуре 90-100°С).Изделия из него могут эксплуатироваться при температуре не выше 70°С.

При трении волокно приобретает высокий электростатический заряд, это свойство используется для изготовления из них лечебного белья при таких заболеваниях, как радикулит, артрит.

Негорючие.

Устойчивы к действию микроорганизмов. Далее...

Полиолефиновые волокна

К полиолефиновым волокнам относятся полиэтиленовые и полипропиленовые волокна.

Рост мирового производства полиолефиновых волокон продолжается, в том числе и с различными многофункциональными свойствами.

Наибольшее распространение получили полипропиленовые волокна. Они являются вторыми среди всех химических волокон по темпам роста производства и объему выпуска. Выпуск полипропиленовых волокон в 2000г составил 19% от суммарной продукции всех видов синтетических волокон. В 2003 г. в России впервые на ООО «АС-Пресс» (г. Краснодар) было освоено новое современное производство мультифиламентных полипропиленовых текстильных нитей, в том числе и текстурированных. Подробно о методах получения

Полипропиленовое (ПП) волокно — синтетическое волокно, формируемое из расплава полипропилена.

Отличительные свойства ПП волокон.

Исключительной особенностью этих волокон является их очень низкая плотность 0,91-0,92 г/см3.Это самые легкие из всех известных волокон. Гигроскопичность нитей практически равна нулю. Поэтому изделия из них не тонут в воде. Далее...

Полиуретановые нити (волокна)

Полиуретановые (ПУ) волокна — синтетические волокна, формируемые из растворов или расплавов полиуретанов или методом химического формования (полиуретан образуется из диизоцианата и диамина непосредственно в процессе волокнообразования).

Подробно о методах получения.

Отличительные свойства ПУ волокна.

По механическим показателям ПУ волокна резко выделяются среди других  видов химических и натуральных волокон и во многом сходны с резиновыми нитями.

ПУ нити — эластомерные нити, они способные к очень большим обратимым, так называемым высокоэластическим деформациям. Для них характерны высокое удлинение (разрывное удлинение — 800 %), низкий модуль упругости, способность к упругому восстановлению в исходное состояние за очень короткое время (доля упругой деформации 90-92%). Именно эта особенность определяет область применения ПУ нитей, они придают текстильным материалам высокую эластичность, упругость, формоустойчивость и несминаемость.

ПУ нити обладают большой устойчивостью к истиранию (в 20 раз больше, чем резиновая нить), устойчивостью к химическим реагентам. Далее...

Полиэфирные нити (волокна)

Полиэфирные (ПЭ) волокна — синтетические волокна, формуемые из расплава полиэтилентерефталата.

Подробно о методах получения.

Отличительные свойства ПЭ волокна.

Имеют высокую термостойкость, превосходя по этому показателю все природные и большинство химических волокон. Они способны выдерживать длительную эксплуатацию при повышенных температурах.

Устойчивость к истиранию и сопротивление многократным изгибам ПЭ волокон ниже, чем у полиамидных волокон, а ударная прочность выше.

Обладают большой упругостью и низкой гигроскопичностью. Во влажном состоянии их механические свойства (прочность, растяжимость, сминаемость) практически не меняются. Это позволяет получать из ПЭ волокон изделия, хорошо сохраняющие форму. Ткани из таких волокон почти не мнутся, хорошо держат приданную форму, имеют малую усадку, быстро сохнут.

Устойчивы к действию светопогоды, микроорганизмов, моли, коврового жучка, плесени. Далее...

Минеральные химические нити (волокна)

К минеральным химическим нитям относятся нити из неорганических соединений — стеклянные и металлические.

Стеклянное волокно (стекловолокно)

Стекловолокна изготовляют из расплавленного стекла в виде:
• непрерывного волокна — элементарные нити неограниченной длины диаметром 3—100мкм
• штапельного волокна – отрезки длиной 1—50см и диаметром 0,1—20мкм.

Непрерывное стекловолокно формуют вытягиванием из расплавленной стекломассы через фильеры (число отверстий 200—2000) при помощи механических устройств, наматывая волокно на бобину. Диаметр волокна зависит от скорости вытягивания и диаметра фильеры. Технологический процесс может быть осуществлен в одну или в две стадии. В первом случае стекловолокно вытягивают из расплавленной стекломассы (непосредственно из стеклоплавильных печей), во втором используют предварительно полученные стеклянные шарики, штабики или эрклез (кусочки оплавленного стекла), которые плавят также в стеклоплавильных печах.

Штапельное стекловолокно формуют одностадийным методом путём разделения струи расплавленного стекла паром, воздухом или горячими газами и др. методами. Далее...

Модифицированные волокна

Электропроводные волокна получают при обработке свежесформованных волокон солями тяжелых металлов, в результате получают волокна с наполнением мелкодисперсными частицами металлов или их соединений. Такие волокна могут обладать и бактерицидными свойствами.

Одним из направлений модификации волокон является получение огнезащищенных волокон, т.к. актуальной является профилактика пожаров за счет применения огнестойких текстильных изделий. В ряде стран приняты законы, которые запрещают применение воспламеняющихся материалов для детской одежды и домашнего текстиля, в гостиницах, зрелищных, лечебных и офисных учреждениях, в авиации, автомобилестроении, железнодорожном транспорте. Огнезащищенные волокна получают путем введения в их состав антипиренов (замедлителей горения), химической огнезащищающей обработкой или другими способами.

Углеродные волокна получают на основе полимераналогичных превращений исходных волокон (вискозных и полиакрилонитрильных). При высокотемпературных обработках этих волокон происходит полное изменение структуры полимера. Используя исходные волокна с различной структурой и свойствами, проводя термические обработки в различных средах и при различных температурных режимах, получают широкую гамму различных видов углеродных карбонизованных и графитированных волокон: высокопрочных, высокомодульных, электропроводных, термо- и жаростойких, химически стойких и других. Далее...

Получение химических нитей

Прототипом процесса получения химических нитей послужил процесс образования шелкопрядом нити при завивке кокона. Существовавшая в 80-х 19 столетия гипотеза о том, что шелкопряд выдавливает волокнообразующую жидкость через шелкоотделительные железы и таким образом прядет нить, легла в основу технологических процессов формирования химических нитей.

Подробная информация на стр «История изобретения искусственных нитей».

Современные способы формования нитей также заключаются в продавливании исходных растворов или расплавов полимеров через тончайшие отверстия фильер.

Несмотря на некоторые различия в получении химических волокон и нитей разных видов, общая схема их производства состоит из следующих основных этапов:

  1. Получение сырья и его предварительная обработка
  2. Приготовление прядильного раствора (расплава)
  3. Формование волокна
  4. Вытягивание и термообработка волокна
  5. Отделка сформованного волокна

Далее...

Модификация волокон

Основным направлением расширения и улучшения ассортимента химических волокнистых материалов является не столько разработка новых видов полимеров, сколько модификация уже существующих волокон с целью придания им новых свойств.

Модификация волокон — направленное изменение текстильных волокон и нитей с целью придания им новых заранее заданных свойств.

Благодаря техническому прогрессу в области производства химических волокон, наряду с «классическими» видами волокон, созданы их модифицированные виды с оптимизированными характеристиками. Появились высокотехнологичные химические волокна нового поколения со специальными функциями: пониженной горючести, антимикробные, антиаллергические, изменяющие цвет в зависимости от температуры и освещения, терморегулирующие, защищающие от статического электричества и ультрафиолетовых лучей, и т. д.

В учебных пособиях по «Материаловедению швейного производства» ( см ниже источники 1,2,3) выделяют физическую и химическую модификацию. В научных трудах доктора технических наук К.Е. Перепелкина выделены физическая, композитная и химическая модификации.
Могут применяться комбинированные методы модификации. Часто используется сочетание физического с композитным или химическим модифицированием. Комбинация методов композитного и химического модифицирования применяется редко, потому что в обоих методах изменяется химический (или композитный) состав волокон. Далее...